Optimization of Airfoil Design for Minimizing Vibrations

Sierra Nelson, Mechanical Engineering – Florida A&M University Advisor: Gregory Banyay

Introduction

- This project aims to develop an optimized airfoil design that reduces vibrations.
- Vibrations in Airfoils can increase noise
- Enhancing Airfoil design can lead to reduction in structural fatigue and improve acoustic performance

Objectives

Optimize 1D Beam

Determine the optimal values for

- Young's Modulus (1e11 Pa $\leq E \leq$ 2.1e11 Pa)
- Moment of Inertia ($6.67e 5m^4 \le I \le 2.083e 3m^4$)

 bh^3

- Base (b): $0.1m \le b \le 0.2m$
- Height (h): $0.2m \le h \le 0.5m$

$I = \frac{12}{12}$

• Length $(1 m \le L \le 5 m)$ **Goal:** Maximize natural frequency

Implement Genetic Algorithm

A Genetic Algorithm starts with a group of possible solutions to find the best one.

Goal: Use a Genetic Algorithm to determine optimal values for a 1D Beam System

This code defines a 1D Beam optimization problem using the 'ElementwiseProblem' class.

- Variables: Young's Modulus (E), Moment of Inertia (I) and Length (L).
- Objective: Single objective optimization done to maximize the eigenvalues for natural frequency (f₁(x) = √λ)
 Bounds: The upper and lower bounds shown are consequently for each one of the variables mentioned before.

Best solution found:

- •This output reveals the **optimal parameters** identified by the optimization process.
- •These optimal values would typically correspond to a **concentrated cluster** of data points.

E (Young's Modulus) :	I (Moment of Inertia):		L (Length) :
1.202e11	1.655e-3 m ⁴		3.448 m
Natural Frequencies (Hz):			
Non-rigid body modes		Mode 1: 3.184e4	
		Mode 2 1.088e5	

Analysis:

- Two rigid body modes computed as well due to 2 DOF system without boundary conditions
- The frequencies computed exhibit on broad range

Future Objectives

Choosing a Genetic Algorithm (GA):

- Genetic Algorithms are well suited for complex optimization problems involving multiple variables with nonlinear relationships.
- GAs are also typically used in optimization problems involving one objective

Enhanced Design Parameters:

 Update the design parameters to include continuous and discrete variables

Broader Design Objectives:

Include additional design objectives(i.e., fatigue, acoustics)

Acknowledgements

This work was partially supported by the **PIPELINE**: **P**enn State Intern **P**ipelin**E** LInks to **N**avy Engineering program, ONR grant #N000142312656. The Penn State PIPELINE Program motivates and connects students and faculty to careers and research opportunities with the Navy technical workforce.

References

J. Blank and K. Deb, "Pymoo: Multi-Objective Optimization in Python," in IEEE Access, vol. 8, pp. 89497-89509, 2020

